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Abstract: We show that a finite non-vanishing ghost dressing function at zero momen-

tum satisfies the scaling properties of the ghost propagator Schwinger-Dyson equation.

This kind of Schwinger-Dyson solutions may well agree with lattice data and provides an

interesting alternative to the widely spread claim that the gluon dressing function behaves

like the inverse squared ghost dressing function, a claim which is at odds with lattice data.

We demonstrate that, if the ghost dressing function is less singular than any power of p, it

must be finite non-vanishing at zero momentum: any logarithmic behaviour is for instance

excluded. We add some remarks about coupled Schwinger-Dyson analyses.
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1. Introduction

The infrared behaviour of Landau gauge lattice gluon and ghost propagators is an interest-

ing and hot subject. Two main methods are used: lattice QCD (LQCD) and Schwinger-

Dyson equations (SDE) in which we include related methods as RGE, etc. In ref. [1] we

have shown that a combination of both methods is extremely enlightening as it combines

the advantages of lattice QCD’s full control of errors and SDE’s analytical character.
We only consider the particularly simple ghost propagator SDE :
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We have studied the discrepancy between LQCD data and a widely spread belief: the

ghost propagator SDE is claimed to imply a gluon dressing function behaving like the

inverse squared ghost one. In ref. [1] we have reconsidered the scaling properties of the

SDE and found three possible ways out of this problem (which are summarised in table 1

of that paper). The first one is to assume a singular behaviour of the ghost-gluon vertex

in the deep infrared. A second possibility implies a very singular ghost dressing function

which is excluded by LQCD. The third one is to assume that the ghost dressing function

is less singular in the infrared that any power of p. In view of the general belief that the

ghost dressing function was strongly singular we had not paid in ref. [1] attention to the

third one.

Very recently, Sternbeck et al. [2] have produced two new evidences: i) the ghost-gluon

vertex seems not to be singular, ii) the ghost dressing function seems to behave at most

like log p in the infrared. These two evidences, taken together, strongly encourage us to

consider now seriously the third above-mentioned solution. This is the aim of the present

letter.

– 1 –



J
H
E
P
0
6
(
2
0
0
6
)
0
0
1

To our surprise we found that one can demonstrate from the scaling analysis of the

ghost propagator SDE the impossibility of a log p behaviour or any other behaviour which

is less divergent than any power of p: under these conditions, the ghost dressing function

necessarily has a finite non-vanishing limit at zero momentum. This is at odds with a very

general belief that the ghost dressing function is divergent. The proof will be displayed in

section 3. We will shortly discuss published results about coupled gluon and ghost SDE in

section 4.

2. Notations and summary of up-to-date lattice results

We use the following notations [1]:

Γ̃µ(−q, k; q − k) = qµH1(q, k) + (q − k)µH2(q, k)
(
F (2)

)ab

(k2) = −δab F (k2)

k2

(
G(2)

µν

)ab

(k2) = δab G(k2)

k2

(
δµν −

kµkν

k2

)
, (2.1)

where G(2) and F (2) are respectively the gluon and ghost propagators, G and F are respec-

tively the gluon and ghost dressing functions and where Γ̃µ(−q, k; q− k) is the ghost-gluon

vertex ( k and q are the momenta of the incoming and outgoing ghosts and q − k the

momentum of the gluon) .

Following for simplicity the common, convenient, but not really justified, assumption

of a power-law behaviour of the propagators in the deep infrared, we define

F (k2) ∼

(
k2

ν

)αF

, G(k2) ∼

(
k2

λ

)αG

. (2.2)

In ref. [1] we have also defined an infrared exponent αΓ for the vertex funtion H1 (αΓ < 0

means a singular infrared behaviour).

Using the ghost propagator SDE equation it is often claimed that 2αF +αG = 0. This

belief is so strong that one often uses only one parameter κ = −αF = αG/2. However, as

we will see in more details, everybody agrees that αG is close 1 to 1 and it becomes now

clear 2 that αF is close to zero. Then the relation 2αF + αG = 0 is not satisfied [1, 2] and

the arguments which support it have to be reconsidered.

The lattice gluon propagator. Several SDE studies ([3] and references therein) predict

a vanishing zero momentum propagator while, as discussed in ref. [4], a gluon propagator

converging continuously to a non-zero value at vanishing momentum is a rather general

1For example, in many SDE approaches it is found [3] αG ' 1.18
2One may wonder why many power law fits have given negative αF . Our own fit in ref.[1] (table 2) has

produced negative values very close to zero, but the errors were clearly underestimated. Presumably the

systematic one, due to the functional form chosen for the fit, has not been properly taken into account.

This is also the case in several other published results.
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Figure 1: F (p) from lattice simulations for SU(2) (left, V ol = 484, β = 2.3) and SU(3) (right,V ol =

324, β = 5.8). Logarithmic scales are used for x-axis in both plots. β = 2.3 for SU(2) has been

chosen to guarantee that the string tension in lattice units is close to that of β = 5.8 for SU(3).

lattice result (in particular, the authors of ref. [5] obtain a non-vanishing infrared limit for

the gluon propagator at a lattice volume of around 2000 fm4). Therefore our preferred

solution 3 is

αG = 1. (2.3)

But, even if we relax this relation and assume a vanishing gluon propagator with

αG > 1, the solution with a finite ghost dressing function at zero momentum remains

possible as we shall see.

The lattice ghost propagator. The infrared behaviour of the ghost dressing function

estimated from lattice simulations is a current controversial subject (see [7] and references

therein). Very recent lattice estimates [2] seem to point towards a ghost dressing function

rather close to the perturbative behaviour: the dressing function only shows, if any, a

logarithmic dependence on the momentum (see ref. [2, figure 2]).

We confirm these results. In figure 1 the ghost dressing function is plotted as a function

of log(p) for small values of the momenta. These plots were obtained from lattice simula-

tions at β = 5.8 and a volume 324 in the SU(3) case and at β = 2.3 and a volume 484 in the

SU(2) case. It is clear from these plots that F (p) does not exhibit any power law: αF = 0.

For SU(3) F (p) is approximately linear in log(p) and for SU(2) it has even a smoother

behavior (In this case one obtains a good fit of the data with a function C(log |p|)γ and

γ ≈ 0.4).

The ghost-gluon vertex. In ref. [2], the authors did not find any evidence for a sin-

gularity in the case of a vanishing gluon momentum. Let us remark that this particular

3Let us recall however that there is still a problem coming from the Slavnov-Taylor identity for the three

gluon-vertex: we have shown that, the vertices being regular when one momentum tends to zero, it implies

αG < 1. Is it possible to avoid any contradiction by assuming, as done by Cornwall [6], a non-regular

behaviour for the longitudinal part of the three-gluon vertex? This deserves more investigation.

– 3 –
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kinematical configuration isolates the form factor H1 (see Eq.(2.1)) which enters in the SD

equation (It is worth recalling that in perturbation theory H1(q, 0) + H2(q, 0) is equal to 1

although H1(q, 0) is not [8]). Our dimensional analysis of the ghost SDE (see next section

3) invokes a different kinematical configuration for this form factor, H1(q, k → 0) instead

of H1(k, k). The non-singular behaviour they found as k tends to 0 excludes however the

singularity of the ghost-gluon vertex that we proposed in ref. [1] as our favoured solution

to reconcile the ghost propagator SDE and the lattice inspired relation 2αF + αG > 0.

In conclusion lattice simulations show a strong evidence that αG = 1 and 2αF +αG > 0,

far from zero. Now we have a fair indication that αF = 0 and about the regularity of the

vertex form factor involved in the ghost SDE. This leads us to revisit, in next section, the

case in column 4 of table 1 in ref. [1] for ghost and gluon propagators and vertices satisfying

the scaling properties of ghost SDE.

3. Ghost SDE: the case αF = 0

We will now demonstrate that F (0) is finite non-vanishing for αF = 0. We will exploit the

constraints, summarized in table 1 of ref. [1], between the infrared exponents αF , αG, αΓ,

from the ghost SDE. The IR convergence of the loop integral in the ghost SDE implies the

two conditions:

αF + αΓ > −2 , αG + αΓ > −1 . (3.1)

Then the dimensional consistency of ghost SDE at small momenta leads to only three

allowed cases:

i) αF 6= 0 and αF + αG + αΓ < 1 =⇒ 2αF + αG + αΓ = 0

ii) αF 6= 0 and αF + αG + αΓ ≥ 1 =⇒ αF = −1

iii) αF = 0 and αG + αΓ ≥ 1 does not require any further constraint.

We shall look, in the following, at the consequences of the third case. It includes in

particular αG = 1 and αΓ = 0 which is favoured by lattice simulations (see section (2) ).

Nevertheless we shall not suppose, in the following derivation, anything more than αG +

αΓ ≥ 1 and conditions (3.1). This leaves open, for example, the possibility that the gluon

propagator goes to zero in the IR limit, the vertex remaining finite or singular.

Of course, even with αF = 0, we cannot exclude a priori the possibility that F (k)

diverges or tends to zero more slowly than any power of k when k → 0. We shall however

prove that this is not allowed: F (k) remains finite in this limit provided that the two

following conditions are satisfied:

αF = 0 , αG + αΓ ≥ 1 (3.2)

Writing the subtracted bare SD equation for two scales λk and κλk (see ref. [1, eq. (14)])

one obtains:

1

F (λk)
−

1

F (κλk)
= g2

BNc

∫
d4q

(2π)4

(
F (q2)

q2

(
(k · q)2

k2
− q2

)
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×

[
G((q − λk)2)H1(q, λk)

(q − λk)2
−

G((q − κλk)2)H1(q, κλk)

(q − κλk)2

])
, (3.3)

where λ is a parameter which we shall use to study the IR (λ → 0) dimensional behaviour

of F ; κ is a fixed number, 0 < κ < 1, needed to write a subtracted equation ensuring the

UV convergence. It was shown in ref. [1] that the r.h.s. of eq. (3.3) is the sum of two terms

behaving respectively as λ2Min(αF +αG+αΓ,1) and λ2 when λ → 0. So it behaves as λ2 when

the conditions (3.2) are satisfied. For any κ there is a value of λ and c such that ∀λ′ ≤ λ

we have | 1
F (λ′k) −

1
F (κλ′k) | ≤ cλ′2, thus:

∣∣∣∣
1

F (λk)
−

1

F (κλk)

∣∣∣∣ ≤ cλ2

...∣∣∣∣
1

F (κn−1λk)
−

1

F (κnλk)

∣∣∣∣ ≤ cλ2κ2(n−1) (3.4)

which implies:
∣∣∣∣

1

F (λk)
−

1

F (κnλk)

∣∣∣∣ ≤ c
1 − κ2n

1 − κ2
λ2. (3.5)

So F → ∞ when λ → 0 is excluded because taking the limit of the above expression when

n → ∞ we should have | 1
F (λk) | ≤ c 1

1−κ2 λ2 and F would diverge as or more rapidly than 1
λ2

implying αF ≤ −1 in contradiction with the hypothesis αF = 0. Let us remark that F → 0

is also excluded: Eq. (3.5) implies | 1
F (κnλk) | ≤ | 1

F (λk) |+ c1−κ2n

1−κ2 λ2 and 1
F (κnλk) cannot tend

to infinity when n → ∞. This completes the proof. Notice that we have used bare Green

functions and couplings, everything remains however exactly the same if we replace them

by renormalized ones.

This is our main result: If αF = 0 the ghost dressing function has to be finite and 6= 0

in the IR limit. This solution is compatible with our knowledge from lattice simulations

about the behavior of the ghost dressing function and ghost-gluon vertex. Of course, the

current lattice simulations cannot yet exclude a smooth divergence which the preceding

dimensional analysis forbids. A detailed numerical study of the ghost propagator in the

deep IR is strongly needed.

4. Remarks about coupled gluon and ghost SDE solutions

The combination of the scaling analysis of ghost SDE and lattice predictions appears to be

very restrictive concerning the low-momentum behaviour of gluon and ghost propagators.

Such a behaviour must be a solution of the combined SDE for both gluon and ghost

propagators. The schemes followed to solve the combined SDE’s have often led to 2αF +

αG = 0 and αG ' 1 (hence a strongly divergent ghost dressing function). However, a

two-loop analysis [9] proves to be much less restrictive in constraining αG. Our findings

require to reconsider these approaches by taking into due account the special case αF = 0.

In a recent paper [10] Aguilar and Natale found αG = 1 and αF = −0.04, not far from

our present conclusions and deserving a closer comparison. They followed the Cornwall [6]

– 5 –
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lattice m0 (GeV) Zb(a)

5.6 (244) 0.523(2) 3.69(1)

5.7 (324) 0.527(1) 3.85(1)

5.8 (244) 0.493(7) 3.88(3)

6.0 (324) 0.503(4) 3.99(2)

6.0 (244) 0.461(16) 3.97(6)

Table 1: Best-fit parameters.

prescription for the trilinear gluon vertex and solved the coupled equations for the ghost and

gluon propagators in the Mandelstam approximation [11]. Concerning the ghost dressing

function, in spite of the fact that they find it slowly power-like divergent, it remains flat till

very small momenta. This last point is in contradiction with the lattice results in ref. [2]

and ours in figure 1, where F (k) is not at all so flat and shows a logarithmic enhancement as

the momentum decreases. Of course, if power-like divergences are excluded, the arguments

presented in section 3 imply a flat dressing function in a small momentum range presumably

not yet reached by current lattice analyses.

To compare quantitatively their gluon propagator with LQCD [12], we have applied

the simple parametrization they proposed:

G
(2)
bare(q

2; a,L) =
Zb(a)

q2 + m0(L)4

q2+m0(L)2

+ O(a, 1/L) , (4.1)

where a stands for the lattice spacing and L for the lattice length. In refs. [12], the gluon

propagator was estimated from 244 lattices at β = 5.6, 5.8, 6.0 and 324 lattices at β = 5.7

and β = 6.0 and analyzed through OPE or instanton liquid models that failed in describing

the very low momentum range (q < 0.4GeV). In figure 2, we plot the curves corresponding

to the best-fit parameters m0 and Zb collected in table 1. The parametrization eq. (4.1)

matchs pretty well the lattice data 4. Moreover one knows that, at the leading log,

d(log(Zb(a)) =
13

22
d(log β) . (4.2)

Performing a linear fit of log(Zb) as a function of log(β) for β ≥ 5.7 we obtain a slope

approximately equal to 0.69 which has to be compared to 13
22 = 0.59. That result is

unexpectedly good for the large lattice spacings we take in consideration.

5. Conclusions

The main result we presented in this brief note was to emphasize the interest of a general

class of SDE solutions where αF ≈ 0. This solution has the advantage of being compatible

with other convincing lattice results namely: αG = 1 and 2αF + αG > 0. It is also

4The masses we obtain differ from the one quoted in ref. [10] but these depend on a parameter, Λ, which

in their approach can be varied.
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Figure 2: Best fits to the lattice data (left) and Log-log plot of Zb in terms of the lattice bare

gauge coupling parameter β (right). The solid blue (dotted red) line shows a fit to a linear formula

where the slope is free to be fitted (fixed by one-loop perturbation theory in eq. (4.2) ).

compatible with a still uncertain result concerning the regularity of the ghost-gluon vertex.

We have proven that if αF = 0 the ghost dressing function must be finite in the IR limit.

Of course one would need measures on larger volumes in order to test the finiteness of the

ghost propagator in the limit k → 0.

We have discussed some results from published coupled ghost and gluon SDE solutions

and also shown that the lattice gluon propagator data at low momenta can be well described

by the very simple parametrisation eq. (4.1) inspired by a recent gluon SDE analysis.
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